

Pag. 1/39

BDF DLL ver. 2.5.4; Arc. ver. 2.9.0 Completed 08-03-06 Printed 02/05/2006 9.17

DLL for SELECTION of
BELT DRIVEN FANS

For integration into OEM CAE/design programs

running under 32 bit PC operating systems

DLL Version 2

(Release 2.5.4)

Archive version 2.9.0

USER MANUAL

Rev. 13

Pag. 2/39

BDF DLL ver. 2.5.4; Arc. ver. 2.9.0 Completed 08-03-06 Printed 02/05/2006 9.17

1. INDEX

1. INDEX 2

2. GENERAL DESCRIPTION 5
2.1 Scope 5
2.2 General properties of programming with DLLs of subroutines 5
2.3 DLL Versions 5

3. SYSTEM SPECIFICATIONS 7
3.1 Hardware/OS specifications: 7
3.2 Software specifications 7
3.3 General conventions 7
3.4 Product descriptors 8
3.5 Character variables 8
3.6 Software location 8
3.7 Error codes 9

4. FUNCTIONALITY OF THE SELECTION SUB-PROGRAMS 10
4.1 List of the available fan ranges and versions: GET_INI_CONFIG 10
4.2 List of the available fans: GET_PRODUCTS 11
4.3 List of data about the archive version: GET_ARC_VERSION 12
4.4 List of available accessories for each selected fan: GET_ACCESSORY 13
4.5 Nameplate/limit data for each selected fan: GET_STANDARDS_FANALONE 14
4.6 Certification flags for each selected fan: GET_CERT_DATA 15
4.7 Operating point calculation for single selected fan: GET_CALCULATION_FANALONE 16
4.8 Operating point calculation for a version range: GET_CALCULATION_MULTIFANS 18
4.9 Extension of the basic fan data to a complete set: GET_NOISE_DATA 22
4.10 Polynomial curves for performance diagram of the selected fan 23
4.11 Constant SWL curves of the selected fan: PRESS_DB_CONST 24
4.12 Constant SWL curves of the selected fan: POINTS_DB_CONST 25
4.13 Parabolic constants defining the normal operation area: GET_GRAPH_K 26
4.14 Constant speed performance curves through design operating point: GET_PCURVES 27
4.15 Bitmap-format picture of the selected fan: GET_PICTURE 28
4.16 Bitmap-format picture filename of the selected fan: GET_PICTURE_NAME 28
4.17 EMF-format dimensional drawing of the selected fan: GET_WMF 29

Pag. 3/39

BDF DLL ver. 2.5.4; Arc. ver. 2.9.0 Completed 08-03-06 Printed 02/05/2006 9.17

4.18 EMF-format dimensional drawing of the selected fan: GET_WMF_DIM_LIST 29
4.19 Belt drive design and life calculation: single optimum design - GET_CALCULATION_BELT 30
4.20 Belt drive design and life calculation: multiple choice - GET_CALCULATION_MULTI_BELT 33
4.21 Setting up the archive search path - SETDLLPATH 36

5. ARCHIVE SCOPE AND COVERAGE 37

6. UPDATE HISTORY 38

Pag. 4/39

BDF DLL ver. 2.5.4; Arc. ver. 2.9.0 Completed 08-03-06 Printed 02/05/2006 9.17

Pag. 5/39

BDF DLL ver. 2.5.4; Arc. ver. 2.9.0 Completed 08-03-06 Printed 02/05/2006 9.17

2. GENERAL DESCRIPTION

2.1 Scope

The NICOTRA Belt Driven Fan (BDF) selection DLL is a set of precompiled software functions, intended
for integration with OEM automated design (Computer Aided Engineering - CAE) programs.

These functions allow interrogation of proprietary archives to obtain a list of available products and, for
each selected product, operating point identification, belt drive life and design parameters, polynomial
functions for plotting performance graph, dimensional drawing, picture and list of available accessories.

2.2 General properties of programming with DLLs of subroutines

Under Microsoft Windows, programs can employ DLLs (Dynamic Link Libraries), which allow truly
modular programming. They are like black boxes, within which all required functions from a main program
can be separately stored with a predefined interface. Therefore a large program can be divided into several
modules, which can be developed by different programmers. Furthermore there are advantages in testing
separately the single modules.

This universal interface also offers the possibility of using these modules within other programs, so that
separate CAE programs, for different product types or ranges, can use the same supplier-furnished
functions for calculation components.

Product and/or calculation methods updates can also be easily integrated into the CAE programs
because only the affected modules (DLL's) have to be updated.

The Nicotra dll for calculation of belt driven fans was also conceived with a modular archive structure,
with the objective of making as simple as possible any update or extension of the product databases.

2.3 DLL Versions

Different minor variants of the Nicotra.dll version 2 file have been made available to the users:

• Version 2.0.0 (633 KB, 27-07-01) is a stand-alone dll compatible with Win32 operating systems
(Win�98, WinNT, Win2000, WinME) but not with Windows 95. It was distributed with RDH Upgrade
packages 2.5 to 2.6.

• Version 2.1.0 (237 KB, 26-10-01) is the same code, recompiled with different settings, to achieve
compatibility also with Windows 95. The smaller DLL file requires three additional dlls to be located
together with the nicotra.dll file (alternatively they can be located in the \Windows\Sistem32 directory);
they are: Dformd.dll (418 KB, 17-11-98), Dforrt.dll (411 KB, 17-11-98) and Msvcrt.dll (261 KB, 01-03-
99). It was included in the updated Ventil v. 2.0.0 distribution CD-Rom.

• Version 2.1.1 (237 KB, 27-11-01) is similar to version 2.1.0, but was recompiled with a character string
length, of the �List� variable used by GET_PRODUCTS, reduced to 20000 characters, as used by the
DLL ver. 1.0.0, to achieve compatibility with existing main programs. This string was extended, in the
former two versions, to 30000 characters to compensate for the increased number of fans dealt with
by Ventil. This special version is available from Nicotra to assist software developers who wish to
keep existing software while updating to the revised and extended mathematical models employed by
the new dll ver. 2. See also chapter 4.2.

Pag. 6/39

BDF DLL ver. 2.5.4; Arc. ver. 2.9.0 Completed 08-03-06 Printed 02/05/2006 9.17

• Version 2.2.0 (237 KB, 28-01-02) is the same code as version 2.1.0, apart from the correction of a bug
which produced a slight overestimate (of roughly 1 dB) of the sound power levels of twin fans only,
when calculated according to the BS 848 Part 2, appendix G mathematical model. It has been
distributed as part of the ADH CP 2.0 upgrade package.

• Version 2.2.1 (237 KB, 28-01-02) is the same code as version 2.2.0, with the length of the variable List
in GET_PRODUCTS reduced again to 20000 characters, to achieve compatibility with code written for
the older dll ver. 1.0.0 .

• Version 2.3.0 (245 KB, 19-06-02) is an improved variant of version 2.2.0, with corrections of a couple
of bugs which formerly prevented proper calls to the two graphical routines GET_WMF and
GET_WMF_DIM_LIST. A �SETDLLPATH� routine was added, with slight changes to the archive
search procedures. This version was distributed as part of the RDH Upgrade package 2.6 and of the
ADH Upgrade package 2.7.

• Version 2.3.1 (245 KB, 09-10-02) is identical to version 2.2.0, apart from a correction to a mistyped
value for a motor shaft diameter. This version is distributed together with the DLL technical
documentation for SW developers, as part of the ADH Upgrade package 2.3b and as integral part of
Ventil 2.0.2.

• Version 2.3.2 (245 KB, 28-01-03) is identical to version 2.3.1, apart from correction of a bug which
sometimes prevented a successful call to the function GET_PICTURE_NAME. This version is
distributed together with the DLL technical documentation for SW developers, and as part of the
redistributable archive package for ADH and RDH fans.

• Version 2.3.3 was just a development version, not distributed.

• Version 2.4.0 (268 KB, 01-07-04) was modified to introduce support for AMCA 301 noise calculation
model. This version is distributed together with the DLL technical documentation for SW developers,
and as part of the redistributable archive package for ADH, RDH and AT fans.

• Version 2.5.0 and 2.5.1 were just development versions, not distributed.

• Version 2.5.2 (292 KB, 20-06-05) was modified to improve support for AMCA 301 noise calculation
model, including handling outlet-side licensed data. Functions to provide extended noise information
(GET_NOISE_DATA), to provide the constants for parabolic margins delimiting the useful operation
range (GET_GRAPH_K) and to provide flags stating the type of third-party performance certification of
the of a specified fan (GET_CERT_DATA) have been included. This version is distributed together
with Ventil Version 3.1.2, with the DLL technical documentation for SW developers, and as part of the
redistributable archive package for ADH, RDH, RDA and AT fans.

• Version 2.5.3 was a purely development version, not distributed.

• Version 2.5.4 (292 KB, 20-06-05) was modified to improve the smoothness of the constant power level
curves, and to correct a bug which had de-activated the control on the minimum number of parallel
belts to be used when selecting belt drives with the functions GET_CALCULATION_BELT and
GET_CALCULATION_MULTIBELT.

Pag. 7/39

BDF DLL ver. 2.5.4; Arc. ver. 2.9.0 Completed 08-03-06 Printed 02/05/2006 9.17

3. SYSTEM SPECIFICATIONS

3.1 Hardware/OS specifications:

� IBM-compatible PC, with Intel 486 DX4 100 MHz or higher processor

� Microsoft Windows 95, 98, Windows ME or Windows NT operating system.

� RAM min. 8 MB

� Free space on hard disk min. 18 MB to install the reduced set of fan ranges and versions
(ADH+RDH+AT, from the redistributable, compressed package).

� Free space on hard disk min. 40 MB to install the complete set of fan ranges and versions (from Ventil
2.2.0 or later version).

3.2 Software specifications

The DLL was developed and tested as a Standard-32-bit DLL (Regular Static) according to Microsoft
Convention for Windows 95/NT, which exports its functions with a C-compatible interface. All the functions of
the DLL-file can be called with the command parameter "stdcall".

All internal calculations are made with the precision of the variable type double (8 bytes).

All the software functions don�t produce any function value, and exchange return values through the
calling list variables. They are C �Void functions� or Visual Basic and Fortran �Subroutines� or Pascal
�Procedures�. All through this document the word �function� will mean the same as �subroutine�.

3.3 General conventions

A generic DLL function has the following interface structure:

DLL Export Function name (

 int* s1

 int* s2

 double IN input array of double values

 char* KEY (max 30 Bytes)

 int* z1

 int* z2

 double OUT output array of double values

or

 user defined TYPE xxx variable as specified)

Pag. 8/39

BDF DLL ver. 2.5.4; Arc. ver. 2.9.0 Completed 08-03-06 Printed 02/05/2006 9.17

s1, s2, z1, z2 are integer*2 values, originally used for MS Excel 7.0 cells integration. Calling the DLL from
programming languages (C, C++, Pascal, FORTRAN, Basic, etc.) these will usually be dummy variables.
They have been kept only for back compatibility purposes. In the DLL there are no calculations of these
values.

The last array is used as a buffer for the results. The number and content of the items in the input/output
arrays depends on the individual function. In the field OUT, starting from item 1, the input data can be
repeated, to show whether there were transmission mistakes, and then the output data listed. The variable
OUT(0) usually contains a return error code, and is equal to NULL if the function call has been successful.

3.4 Product descriptors

The text variable KEY (pointer to char variable) is used to transfer the �type key�, which clearly identifies
the particular fan. It consists of a string of max. 15 characters, composed by range, size and version
descriptors, separated by spaces, like �ADN 225 L�.

Some functions use a RANGEKEY descriptor instead. This RANGEKEY descriptor is a character string,
which identifies a range and version combination, like �AT-TIC�. The range and version descriptors are
separated by a dash (-). The version descriptor itself may be composed, and contain one or more additional
dashes.

A list of the available RANGEKEY values is located in the NIC_INI.ini configuration file, located together
with the archive files and can be found in the output of the function GET_INI_CONFIG.

In the text fields, only the characters from ASCII(32) to ASCII(127) are allowed. The fields KEY and
RANGEKEY are not case sensitive.

3.5 Character variables

All character variables must be C-styled, null terminated variables.
This is done automatically when the calling program is written with �C�. With other programming

languages a NULL character (ASCII Zero) must be deliberately added after the last significant character, or
the character variable must be padded with NULLs instead of zeros.

3.6 Software location

The DLL (i.e. the �Nicotra.DLL� file) should preferably be stored in the installation directory of the
customer�s CAE program. The auxiliary dll files, Dformd.dll (418 KB, 17-11-98), Dforrt.dll (411 KB, 17-11-98)
and Msvcrt.dll, when required, shall be located either in the system32 directory or, preferably, together with
the nicotra.dll file. Care should be used to check that more recent versions of these files have not yet been
installed with other applications. A first-order sub-directory, relative to the Nicotra.DLL location, shall be
called �Nicotra_it� and shall contain every other file required, with a structure similar to the structure of the
installation directories of the Ventil stand-alone program.

Any alternative location of the DLL files and of the archives requires the use of the SET_DLL_PATH
function. This allows a position, of the Nicotra_it directory, different from the current working directory at the
time of the first DLL function call, including remote location of the archive files on a networked drive,
provided that the archives are still inside a directory called �Nicotra_it�.

Pag. 9/39

BDF DLL ver. 2.5.4; Arc. ver. 2.9.0 Completed 08-03-06 Printed 02/05/2006 9.17

3.7 Error codes

The DLL makes no direct dialogues with the end-user. The main program should use a special routine,
to read the error description from the error code legend, corresponding to the error code returned, and to
show it to the user in a dialogue box. An effort was made to trap major errors, to prevent a system crash.

An ASCII formatted file is supplied with this manual, and contains a legend of the error codes, or a list of
numerical codes and their corresponding description in English language.

This file, called �FAILURE.TXT�, has a structure similar to the following example:

0; no error <CR><LF>

1; file not found <CR><LF> Error message for OUT(0) = 1

2; fan not found <CR><LF> Error message for OUT(0) = 2

...

etc. (The messages are examples only).

Pag. 10/39

BDF DLL ver. 2.5.4; Arc. ver. 2.9.0 Completed 08-03-06 Printed 02/05/2006 9.17

4. FUNCTIONALITY OF THE SELECTION SUB-PROGRAMS

Functions to supply the following data are available from the Nicotra BDF DLL:

� Procedure for setting up the archive files search path.

� List of available fans included within the archives

� List of archives and of their version numbers

� List of available accessories for each selected fan range/size/version combination

� Nameplate/limit data for each selected fan

� Certification status of a specified fan

� Operating point calculation for each selected fan

� Multiple output, operating point calculation for selected fan ranges

� Extension of the noise data to include Lw values inside and outside a duct connected to the fan

� Belt drive design and life calculation for the selected fan and electric motor (electric motor data to be
supplied at run time or reverting to default)

� As above, with multiple choice output

� Polynomial coefficients/coordinates used to plot the performance diagram for each selected fan

� Constant speed curves of the performance for each selected fan

� Bitmap-format picture of the selected fan

� EMF-format dimensional drawing of the selected fan

4.1 List of the available fan ranges and versions: GET_INI_CONFIG

Void Function (subroutine � procedure) name: GET_INI_CONFIG

DLLExport GET_INI_CONFIG (int* NSERIE number of RANGEKEY combinations

 char*10 SERIE[0:99] array of fixed length strings)

This function produces, on a command call, the number and list of available RANGEKEY values, read
from the NIC_INI.ini configuration file.

SERIE is a 100 element array of fixed length (10 bytes) strings, each one containing a single RANGEKEY
descriptor.

If the number of RANGEKEY values in the configuration file exceeds 100, only the first 100 lines are
actually handled. This case doesn�t happen with the available archive packages, but only during testing.

Pag. 11/39

BDF DLL ver. 2.5.4; Arc. ver. 2.9.0 Completed 08-03-06 Printed 02/05/2006 9.17

4.2 List of the available fans: GET_PRODUCTS

Void Function (subroutine � procedure) name: GET_PRODUCTS

DLLExport GET_PRODUCTS (char* LIST String with max. Nmax Bytes)

This function produces, on a command call, a list of products available to the DLL in the available
archives.

The list will be returned as an ASCII string, with each individual product on a separate line, with lines
separated by the <CR><LF> (ASCII(13) and ASCII(10)) characters.

The maximum length of the List character variable is Nmax bytes.

Up to version 1.0.0 Nmax has been equal to 20000 bytes. With the latest additions to the fan range
covered, the output of this function marginally exceeds the 20000 bytes length and is cut short. As a
stopgap solution, for users of the dll in association with an AHU design program, the output can be reduced
to a useful length by editing the Nic_Ini.ini file to remove unused fan ranges (e.g. single inlet fans). See
chapter 5 for details.

Starting from version 2.0.0 of the Nicotra DLL have this variable extended to 30000 characters.

Special versions of the dll file, 2.1.1 and 2.2.1, have been available with this variable reduced back to
20000 characters, to be compatible with existing software. As this backwards compatibility requirement
seems not existing any longer, development of these 20000 Byte string versions has now ceased.

Contact the Nicotra R&D dept. at r&d@nicotra.it if you still have a need for such a backwards
compatibility feature.

Each line of the output has the following format, with commas as field separators:

type-key, code number of supplier, description

(max. 15 Bytes) (max. 20 Bytes) (max. 80 characters)

The first row will contain the �NICOTRA� name.

Example:

NICOTRA

ADN 160 L,610000W,Fan with forward-curved wheel

RDN 180 R,612021W,Fan with backward-curved wheel

Pag. 12/39

BDF DLL ver. 2.5.4; Arc. ver. 2.9.0 Completed 08-03-06 Printed 02/05/2006 9.17

4.3 List of data about the archive version: GET_ARC_VERSION

Void Function (subroutine � procedure) name: GET_ARC_VERSION

DLLExport GET_ARC_VERSION (int* LG Language tag

char* List String with max 20000 characters)

The LG integer variable has to be set to the following:

 =1 German Language

 =2 English Language

 =3 Spanish Language

 =4 French Language

 =5 Italian Language

 =6 Custom Language (when available).

This will identify which version of the language-specific .ACS (accessory list) files must be searched for.
Other archive files are not language dependent.

The list will be returned as an ASCII string, with data related to each product on a separate line, and lines
separated by the <CR> <LF> (ASCII(13) and ASCII (10)) characters. Each line has the following format,
with commas as field separators:

Rangekey,

(max. 15 Bytes)

PRD <Prd file version>, ACS <Acs file version>, DAT <Dat file version>

The first row will contain the �NICOTRA� name and the DLL version Number.

Example:

 NICOTRA v. 2.0.0

 AT-S,PRD 1.0,ACS 1.1,DAT V. 1.0

 AT-SC,PRD 1.0,ACS 1.1,DAT V. 1.0

Pag. 13/39

BDF DLL ver. 2.5.4; Arc. ver. 2.9.0 Completed 08-03-06 Printed 02/05/2006 9.17

4.4 List of available accessories for each selected fan: GET_ACCESSORY

Void Function (subroutine � procedure) name: GET_ACCESSORY

DLLExport GET_ACCESSORY (char* KEY product descriptor

 int* LG language tag

 char* LIST String with max 20000 characters)

This function produces, for each fan identified by the variable KEY in accordance with the values supplied
by the preceding function, a list of the available accessories:

The LG short integer variable has to be set to one of the following values:

=1 German Language

=2 English Language

=3 Spanish Language

=4 French Language

=5 Italian Language

=6 Custom Language (when available)

to get the accessories description in the desired language.

Each accessory takes just one line in the string-field. Rows will be separated by <CR><LF> (ASCII(13)
and ASCII(10)).

Each row contains the following data, separated by commas (,):

type-key, Nicotra code-number, description, Quantity

(max. 15 Bytes) (max. 20 Bytes) (max. 80 Bytes) (max. 5 Bytes)

The quantity field shows how many pieces are required for each fan.

The first row will contain the �NICOTRA� name to identify the supplier.

Example:

NICOTRA

RDN 560 K2,R45065,Inlet guard,2

Pag. 14/39

BDF DLL ver. 2.5.4; Arc. ver. 2.9.0 Completed 08-03-06 Printed 02/05/2006 9.17

4.5 Nameplate/limit data for each selected fan: GET_STANDARDS_FANALONE

Void Function (subroutine � procedure) name: GET_STANDARDS_FANALONE

DLLExport GET_STANDARDS_FANALONE (char* KEY fan type descriptor

 int* z1

 int* z2

 double OUT[0:13], output field of doubles)

This function gives, for the fan indicated by the variable KEY, the nominal and operational limits data, for
which no additional input is required.

The OUT array has the following content:

Dimension Unit Input/Output Remarks

Error parameter OUT(0)

Max. air volume m³/h OUT(2)

Max. total pressure Pa OUT(3)

Max. speed 1/min OUT(4)

Max. shaft power kW OUT(5)

Moment of inertia kg m² OUT(6)

No. of blades OUT(7)

Weight kg OUT(8)

Width mm OUT(9)

Height mm OUT(10)

Depth mm OUT(11)

Shaft diameter mm OUT(12)

Max. radial force at shaft end N OUT(13)

Pag. 15/39

BDF DLL ver. 2.5.4; Arc. ver. 2.9.0 Completed 08-03-06 Printed 02/05/2006 9.17

4.6 Certification flags for each selected fan: GET_CERT_DATA

Void Function (subroutine � procedure) name: GET_CERT_DATA

This function provides, for the fan indicated by the variable KEY, information on the type of third-party
certification applicable to the specified product.

The use of this function is reserved to Nicotra.

Pag. 16/39

BDF DLL ver. 2.5.4; Arc. ver. 2.9.0 Completed 08-03-06 Printed 02/05/2006 9.17

4.7 Operating point calculation for single selected fan: GET_CALCULATION_FANALONE

Void Function (subroutine � procedure) name: GET_CALCULATION_FANALONE

DLL Export GET_CALCULATION_FANALONE

 (int* s1

 int* s2

 double IN[0:12] input array of double values

 char* KEY fan type descriptor

 int* z1

 int* z2

 double OUT[0:31] output array of double values)

This function returns, for the fan identified by the variable KEY, the operating point data.

The command may have different operational modes, according to the selection � Option � flag located in
IN(0).

Size Unit Input/Output Remarks

Numerical input data:

Option Flag IN(0) Mode flag, selects calculation starting from:
1. Air volume and static pressure
2. Air volume and total pressure
3 to 9: reserved for future development
see note1

Installation type IN(1) Installation type (see note2)
1. �A� - free inlet free outlet
2. �B� - free inlet ducted outlet
3. �C� - ducted inlet free outlet (not used)
4. �D� - ducted inlet ducted outlet (not used)

Air density kg/m³ IN(2) see note 3

Temperature °C IN(3) see note 3

Height m IN(4) for optional air density calculation (note 3)

Flow rate m³/h IN(5)

Static pressure Pa IN(6) see Option Flag

Total pressure Pa IN(7) see Option Flag

Speed 1/min IN(8) Reserved for future use, leave 0

Shaft power kW IN(9) Reserved for future use, leave 0

Efficiency IN(10) Reserved for future use, leave 0

Sound power level dB IN(11) Reserved for future use, leave 0

Pag. 17/39

BDF DLL ver. 2.5.4; Arc. ver. 2.9.0 Completed 08-03-06 Printed 02/05/2006 9.17

Power correction factor - IN(12) Between 1.00 and 2.00 , see note 4 also

Size Unit Input/Output Remarks

Numerical output data:

Error code OUT(0)

Installation type OUT(1) Installation type (see note2)
1. �A� - free inlet free outlet
2. �B� - free inlet ducted outlet
3. �C� - ducted inlet free outlet (not used)
4. �D� - ducted inlet ducted outlet (not used)

Air density kg/m³ OUT(2) see note 3

Temperature °C OUT(3) see note 3

Height m OUT(4) for optional air density calculation (note 3)

Flow rate m³/h OUT(5)

Static pressure Pa OUT(6)

Total pressure Pa OUT(7)

Speed 1/min OUT(8)

Shaft power KW OUT(9)

Efficiency OUT(10)

Sound power level DB OUT(11) outlet side dBW(A)

Sound power -outlet side DB OUT(12) linear, not filtered

Sound power -inlet side DB OUT(13) linear, not filtered

Octave spectrum -
outlet side

DB OUT(14..21) not filtered for frequencies 63,125,
250,500,1000,2000,4000,8000 Hz

Octave spectrum -
inlet side

DB OUT(22..29) not filtered for frequencies 63,125,
250,500,1000,2000,4000,8000 Hz

Smallest required
motor power

KW OUT(30) Fan shaft power x safety coefficient
(according to catalogue), see note 4 also

Sound power level DB OUT(31) inlet side dBW(A)

Error code OUT(0)

note1: option numbers from 3 to 9 represent other input data combinations and are reserved for future
development.

note2: installation types are defined in accordance to ISO 5801; only installation types A and B are
supported at the moment.

note3: when a non zero value for fluid density is supplied in IN(2), this value is used for fan performance
calculation and location height IN(4) is discarded; when the input value for air density is zero, this
value is calculated from the values of air temperature IN(3) and location height IN(4), and then
returned in OUT(2); in both cases air temperature IN(3) is checked against the maximum allowable
temperature limit.

Pag. 18/39

BDF DLL ver. 2.5.4; Arc. ver. 2.9.0 Completed 08-03-06 Printed 02/05/2006 9.17

note4: when IN(12) ≤ 0, the value is automatically calculated according to the standard catalogue
recommendations, e.g. equal to 1.20 if fan shaft power ≤ 10 kW, equal to 1.15 if > 10 kW (may be
different for different product ranges).

4.8 Operating point calculation for a version range: GET_CALCULATION_MULTIFANS

Void Function (subroutine � procedure) name: GET_CALCULATION_MULTIFANS

DLL Export GET_CALCULATION_MULTIFANS

 (int* s1

 int* s2

 double IN[0:12] input array of double values

 char* RANGEKEY fan range-version descriptor

 int* z1

 int* z2

 double* OUT error code

 user defined � Fans � TYPE VENT[0:30] output array of user defined types)

This function gives, for the fan product range-version identified by variable RANGEKEY, the operating
point data for each fan within that range-version, in decreasing order of total efficiency. The alphanumeric
variable RANGEKEY must contain a range-version descriptor as described in the paragraph �General
conventions� (e.g. �AT-TIC�).

The command may have different operational modes, according to the selection flag �Option�.

Size Unit Input/Output Remarks

Option Flag IN(0) Mode flag, selects calculation starting from:
1. Air volume and static pressure
2. Air volume and total pressure
3 to 9: reserved for future development
see note1

Installation type IN(1) Installation type (see note2)
1. �A� � free inlet free outlet
2. �B� � free inlet ducted outlet
3. �C� � ducted inlet free outlet (not used)
4. �D� � ducted inlet ducted outlet (not used)

Pag. 19/39

BDF DLL ver. 2.5.4; Arc. ver. 2.9.0 Completed 08-03-06 Printed 02/05/2006 9.17

Air density kg/m³ IN(2) see note 3

Temperature °C IN(3) see note 3

Height m IN(4) for optional air density calculation (note 3)

Flow rate m³/h IN(5)

Static pressure Pa IN(6) see Option Flag

Total pressure Pa IN(7) see Option Flag

Speed 1/min IN(8) Reserved for future use, leave 0

Shaft power kW IN(9) Reserved for future use, leave 0

Efficiency IN(10) Reserved for future use, leave 0

Sound power level dB IN(11) Reserved for future use, leave 0

Power correction factor - IN(12) Between 1 and 2

Error code OUT

Output VENT[0:30] Array of Fans TYPE variables

note1: option numbers from 3 to 9 represent other input data combinations and are reserved for future
development.

note2: installation types are defined in accordance to ISO 5801; only installation types A and B are
supported at the moment.

note3: when a non-zero value for fluid density is supplied in IN(2), this value is used for fan performance
calculation and location height IN(4) is discarded; when the input value for air density is zero, this
value is calculated from the values of air temperature IN(3) and location height IN(4), and then
returned in VENT.RO; in both cases air temperature IN(3) is checked against the maximum
allowable temperature limit.

note4: when IN(12) ≤ 0, the value is automatically calculated according to the standard catalogue
recommendations, e.g. equal to 1.20 if fan shaft power ≤ 10 kW, equal to 1.15 if > 10 kW (may be
different for different product ranges).

The general definition of an element of a �Fans� TYPE element is: VENT(n).element_name. In the
following list the composing elements are listed and described.

Fans TYPE elements description

Element Units Description Type
Tipo - Fan type descriptor String*18

wrn - Warning label (if not empty operational limits have been
exceeded), see note 1

String*12

nrec - Record number in the archive Long

Eta - Efficiency Single

Pvol m³/h Air flow rate Single

Ptot Pa Total pressure Single

Pstat Pa Static Pressure Single

Pdin Pa Velocity Pressure Single

Ngiri 1/min Fan speed Single

Pag. 20/39

BDF DLL ver. 2.5.4; Arc. ver. 2.9.0 Completed 08-03-06 Printed 02/05/2006 9.17

w kW Fan Power Single

Wel kW Minimum required motor power Single

vper m/s Peripheral Velocity Single

Vel m/s Air average Velocity at fan outlet Single

Lwam dB(A) Sound Power Level, A-weighted � outlet side Single

Lwaa dB(A) Sound Power Level, A-weighted � inlet side Single

Ro kg/m³ Air density Single

NB 1/min Reserved Single

Ns 1/min Reserved Single

Nmax 1/min Max Fan Speed allowed in calculations Single

Wmax kW Max Fan Power allowed in calculations Single

diam mm Diameter of the impeller Single

miner kgm² Moment of inertia Single

fl1 kW Max operating fan power Single

fl2 1/min Max operating fan speed Single

fl3 °C Min operating fan temperature Single

fl4 °C Max operating fan temperature Single

fl5 1/min Min operating fan speed Single

NG - Number of impellers Single

Cw - Reserved Single

CN - Reserved Single

cps - Reserved Single

SPLm dB Sound power level � linearly weighted � outlet side Single

fr1m dB SPL outlet side - Octave 63 Hz Single

fr2m dB SPL outlet side - 125 Hz Single

fr3m dB SPL outlet side - 250 Hz Single

fr4m dB SPL outlet side - 500 Hz Single

fr5m dB SPL outlet side - 1000 Hz Single

fr6m dB SPL outlet side - 2000 Hz Single

fr7m dB SPL outlet side - 4000 Hz Single

fr8m dB SPL outlet side - 8000 Hz Single

SPLa dB Sound power level � linearly weighted � inlet side Single

fr1a dB SPL inlet side - Octave 63 Hz Single

fr2a dB SPL inlet side - 125 Hz Single

fr3a dB SPL inlet side - 250 Hz Single

fr4a dB SPL inlet side - 500 Hz Single

fr5a dB SPL inlet side - 1000 Hz Single

Pag. 21/39

BDF DLL ver. 2.5.4; Arc. ver. 2.9.0 Completed 08-03-06 Printed 02/05/2006 9.17

fr6a dB SPL inlet side - 2000 Hz Single

fr7a dB SPL inlet side - 4000 Hz Single

fr8a dB SPL inlet side - 8000 Hz Single

esp - Bearing life calculation exponent Single

Q N Bearing life calculation Reference Radial Load Single

N.B.

Single = Float = IEEE 4 bytes floating-point number

Long = Integer*4 = IEEE 4 byte Integer

String = Character

note 1: the warning character string wrn is set to 'OUT OF LIMIT' when a generic operating limit is exceeded
in the required operating point; with some new products, an additional check of the operating point
location has been added: the warning string can be set to 'TOO LEFT� when the required operating
point is located to the left of the normal operating range, and to 'TOO RIGHT' when the right margin
of the normal operating range is exceeded.

Pag. 22/39

BDF DLL ver. 2.5.4; Arc. ver. 2.9.0 Completed 08-03-06 Printed 02/05/2006 9.17

4.9 Extension of the basic fan data to a complete set: GET_NOISE_DATA

Void Function (subroutine � procedure) name: GET_NOISE_DATA

DLLExport GET_NOISE_DATA (

 single* INLET_DATA_OUT[0:9] inlet noise data out of the duct

 single* INLET_DATA_IN[0:9] inlet noise data inside the duct

 single* OUTLET_DATA_OUT[0:9] outlet noise data out of the duct

 single* OUTLET_DATA_IN[0:9] outlet noise data inside the duct

 single* BO_DATA[0:9] break-out noise data

 int* FLAG_INSTALLAZIONE installation type flag

 int* ERROR error flag

 user defined �Fans� TYPE VENT single "Fans" structure)

This function gives, for the fan duty described in detail in the structure VENT, as calculated by the
function GET_CALCULATION_MULTIFAN, a complete set of noise ratings inside and outside of a duct
connected with the fan inlet and/or outlet. , and under The applicable installation category must be specified
using the variable FLAG_INSTALLAZIONE.

INLET_DATA_OUT noise data outside of the inlet bellmouth / inlet duct end

INLET_DATA_IN noise data inside an inlet duct

OUTLET_DATA_OUT noise data outside of an outlet duct

OUTLET_DATA_IN noise data inside an outlet duct

BO_DATA break-out noise data

So far, noise data inside an inlet duct (INLET_DATA_IN) and break-out noise data (BO_DATA), which
are used for C and D type installation categories, are not supported and always left to 0. The array for noise
data inside an outlet duct is filled out only for installation category "B".

The integer variable FLAG_INSTALLAZIONE must be either set to 0, for installation category "A", "free
inlet, free outlet", or to 2, for installation category "B", "free inlet, ducted outlet".

Inside each of the five ten-element arrays, elements 0 to 7 are octave band sound power levels for the
eight standard octave bands centred on 63, 125, 250, 500, 1000, 2000, 4000 and 8000 Hz. Element no. 8 is
the (Linear) total sound power level Lw, and element no. 9 is the A-weighted total sound power level LwA.

Pag. 23/39

BDF DLL ver. 2.5.4; Arc. ver. 2.9.0 Completed 08-03-06 Printed 02/05/2006 9.17

4.10 Polynomial curves for performance diagram of the selected fan

These four functions allow plotting the performance diagram of the selected fan in a plane having Total
Pressure in Pa as ordinate and Flow Rate in m³/h as abscissa, at the reference density of 1,20 kg/m³.
Separate commands return the 5th degree polynomials representing the curves of each one of the following
four families.

Set of curves Function name Unit
Curves of constant power P GET_GRAPH_POWER kW

Curves of constant speed n GET_GRAPH_RPM 1/min

Curves of constant efficiency eta GET_GRAPH_ETA dimensionless

Curves of constant sound power Lw GET_GRAPH_SOUND (see note)

Each curve has the analytical form:

y = a0 + a1 x + a2 x2 + a3 x3+ a4 x4 + a5 x5

where

y is the total pressure ∆ptotal[Pa] and
x is the flow rate Q[m3/h], comprised between Vmin e Vmax.

Each command has the format

DLLExport GET_GRAPH_XXXXX

 char* KEY

 unsigned short int* z1

 unsigned short int* z2

 double OUT[0:136], output array of 137 double values

A max. of 15 curves, each one extending between the minimum and maximum values, will be calculated.

Pag. 24/39

BDF DLL ver. 2.5.4; Arc. ver. 2.9.0 Completed 08-03-06 Printed 02/05/2006 9.17

Each curve is defined by the value of the constant parameter (power, sound power level, speed,
efficiency), the coefficient a0...a5, and the curve extension, defined by values of minimum and maximum air
volume, (Vmin, Vmax). These data will be stored sequentially in successive fields as follows:

 OUT(0) Error message

 OUT(1) Number of constant values n

 OUT[2], OUT[3].... OUT[1+nx9] =

{value1, a0(value1), a1(value1), a2(value1), a3(value1), a4(value1), a5(value1), Vmin(value1), Vmax(value1),

value2, a0(value2), a1(value2), a2(value2), a3(value2), a4(value2), a5(value2), Vmin(value2), Vmax(value2),

value3, a0(value3), a1(value3), a2(value3), a3(value3), a4(value3), a5(value3), Vmin(value3), Vmax(value3),

...............

value_n, a0(value_n), a1(value_n), a2(value_n), a3(value_n), a4(value_n), a5(value_n), Vmin(value_n), Vmax(value_n)}

NOTE FOR Constant Sound Power Lw: GET_GRAPH_SOUND

This function should employed together with the following PRESS_DB_CONST procedure. It�s used to
provide the number of constant sound power level curves, n, in OUT(1), the constant SWL step value of
each curve, in value_n, and the minimum and maximum air flow [Vmin(value_n), Vmax(value_n)] for each
SWL value, as described above , to be used as inputs in the PRESS_DB_CONST function.

The polynomial coefficients returned by GET_GRAPH_SOUND are useless and meaningless.

4.11 Constant SWL curves of the selected fan: PRESS_DB_CONST

This procedure allows plotting the constant sound-power-level curves on the performance diagram of the
selected fan (in a plane having Total Pressure in Pa as ordinate and Flow Rate in m³/h as abscissa, at the
reference density of 1,20 kg/m³). It returns, for the selected fan and sound power level LW, the pressure vs
air volume curve, point by point.

The procedure has the format

DLLExport PRESS_DB_CONST

 (char* KEY

 float* DB Input: Sound power LW (dB)

 float* VMN Input: Min air volume (m³/h)

 float* VMX Input: Max air volume (m³/h)

 float* PY[0:100] output: array of single values (Pa)

 float* VX[0:100] output: array of single values (m³/h)

 int* Points Input: required number of points (max 100)

 int* Erl Output: Error flag)

Pag. 25/39

BDF DLL ver. 2.5.4; Arc. ver. 2.9.0 Completed 08-03-06 Printed 02/05/2006 9.17

It returns two single-index arrays containing the required curve point by point (index 1 is the lower air
volume end of the curve, index = Points is the higher air volume end).

Vector elements with index = 0 are not point coordinates: VX(0) is the required SWL value, PY(0) is the
actual number of points calculated along the constant SWL curve, equal to Points when the curve is not cut
through the maximum or minimum speed lines.

The actual number of calculated points can be lower than the required one when the constant SWL curve
is cut across the maximum or minimum constant speed curves. A minimum number of 15 points is
calculated.

4.12 Constant SWL curves of the selected fan: POINTS_DB_CONST

This is an extended version of the above function providing the constant sound-power-level curves on the
performance diagram of the selected fan (in a plane having Total Pressure in Pa as ordinate and Flow Rate
in m³/h as abscissa, at the reference density of 1.20 kg/m³). In the extended version, fan installation type,
side and air density can be specified, and it returns, for the selected fan and sound power level LW, the
pressure vs. air volume curve, point by point. Its use is recommended over the simpler and older version,
which might be discontinued in the future.

The procedure has the format

DLLExport POINTS_DB_CONST

 (char* KEY

 float* DB Input: Sound power LW (dB)

 float* VMN Input: Min air volume (m³/h)

 float* VMX Input: Max air volume (m³/h)

 float* PY[0:100] Output: array of single values (Pa)

 float* VX[0:100] Output: array of single values (m³/h)

 int* POINTS Input: required number of points (max 100)

 int* INSTALLATION_FLAG input: installation type flag

 int* SIDE_FLAG input: fan side flag

 float* RO input: Standard density value

 int* ERL Output: Error flag)

INSTALLATION_FLAG is an integer variable used to select the correct installation setup. A value of 0
(zero) means installation type A (free inlet � free outlet) while a value of 2 means installation type B (free
inlet � ducted outlet).

SIDE_FLAG is an integer variable used to choose the target side for the sound power data, returned by
the POINTS_DB_CONST dll routine. If SIDE_FLAG is set to 1, the sound power levels returned by the

Pag. 26/39

BDF DLL ver. 2.5.4; Arc. ver. 2.9.0 Completed 08-03-06 Printed 02/05/2006 9.17

POINTS_DB_CONST dll routines apply to the inlet side, if SIDE_FLAG is set to 2, the sound power levels
returned by the dll routine apply to the outlet side.

VMN and VMX are minimum and maximum volume flow values (in m3/h) for the constant SWL line to be
calculated. If left to zero, the subroutine will calculate the line going from the left to the right extreme edges
of the catalogue performance range for the specified fan.

RO is the input density value in kg/m3, normally 1.20. The subroutine does not provide default values:
this variable must either be set to the standard value of 1.20 or to the actual density value.

The POINTS_DB_CONST routines returns two single-index arrays containing the required curve point by
point (index 1 is the lower air volume end of the curve, index = Points is the higher air volume end).

Array elements with index = 0 are not point coordinates: VX(0) is the required SWL value, PY(0) is the
actual number of points calculated along the constant SWL curve, equal to Points when the curve is not cut
through the maximum or minimum speed lines. The actual number of calculated points can be lower than the
required one when the constant SWL curve is cut across the maximum or minimum constant speed curves.
A minimum number of 15 points is calculated.

4.13 Parabolic constants defining the normal operation area: GET_GRAPH_K

This procedure provides the information to plot the left (high) and right (low) parabolas limiting the
recommended operation area, in the total pressure vs. volume flow rate diagram, for a specific fan, identified
by the descriptor KEY, working at an air density ROCALC.

DLLExport GET_GRAPH_K

 (char* KEY Input: Product descriptor

 float* ROCALC Input: Air density [kg/m3]

 float* KPAR1 Output: Parabolic constant of left-side limit [Pa/(m3/s)2]

 float* KPAR2 Output: Parabolic constant of right-side limit [Pa/(m3/s)2]

 int* ERROR Output: Error Flag)

The fan recommended operation area is between

21 QKPARP Maxt ⋅=−

and
2

min 2 QKPARPt ⋅=−

where Pt-Max and Pt-min are total pressure values in Pa, and Q is volume flow rate in m3/s.

Operation outside of this range may still be feasible, according to the fan speed and the level of structural
loads on the fan, but the use of a different fan size, or the change between an FC fan and a BC one, may be
preferable and provide more stable operation.

Pag. 27/39

BDF DLL ver. 2.5.4; Arc. ver. 2.9.0 Completed 08-03-06 Printed 02/05/2006 9.17

4.14 Constant speed performance curves through design operating point: GET_PCURVES

Void Function (subroutine � procedure) name: GET_PCURVES

DLL Export GET_PCURVES

 (user defined � Fans � TYPE VENT input structure

 float* TABLE(1:7,1:20) output array

 short int* ERC error code/o.p. index)

This function accepts as input a single structure of the �Fans� type, like the elements of the output array
given by the GET_CALCULATION_MULTIFANS. This particular user-defined type is described in detail in
chapter 4.7, and identifies a particular fan and the parameters of its operating point. Any output structure
given by GET_CALCULATION_MULTIFANS is an appropriate input for the GET_PCURVES function.

The output array of single precision, floating point variables contains values of Static Pressure in Pa,
Dynamic Pressure in Pa, Total Pressure in Pa, Shaft Power in kW, Total Efficiency as percentage and
Sound Power Level in dBW(A), all as functions of Volume Flow rate given in m³/h. This allows plotting of the
constant speed performance curves of the fan, at the speed required to achieve the selected duy.

TABLE(1, 1:20) = Volume flow [m³/h]

TABLE(2, 1:20) = Static Pressure [Pa]

TABLE(3, 1:20) = Dynamic Pressure in Pa

TABLE(4, 1:20) = Total Pressure in Pa

TABLE(5, 1:20) = Shaft Power in kW

TABLE(6, 1:20) = Total Efficiency [%]

TABLE(7, 1:20) = Sound Power Level [dBW(A)]

The short integer output variable ERC is either an error code (≥ 300) or the index (between 1 and 20) of

the original operating point in the sequence of volume flow values. This identifies the co-ordinates of an
operating point marker in the diagram.

When both inlet and outlet sound power values are available, outlet side values are listed in the table,
otherwise, the only available Lw values are used.

The error code variable ERC may be set to either -1 or -2 in input, to specify that Inlet side sound power
levels or outlet side sound power levels must be used, respectively, and provided that both are available.
Other input values, including 0, are ignored.

The value of ERC is always overwritten with the index showing the location of the selection point in the
output table.

Pag. 28/39

BDF DLL ver. 2.5.4; Arc. ver. 2.9.0 Completed 08-03-06 Printed 02/05/2006 9.17

4.15 Bitmap-format picture of the selected fan: GET_PICTURE

Void Function (subroutine � procedure) name: GET_PICTURE

DLL Export GET_PICTURE

 (char* KEY input

 HBITMAP handle to Bitmap output)

This function returns a picture of the selected fan. This is sized to be shown inside a picture box with size
200(v) x 300(h) pixel.

The picture is supplied as a Bitmap by the function GET_PICTURE. The function will load the bitmap in
memory and supply directly the "handle� to the required Bitmap. When the resultant "handle" is null, the
picture is not available.

4.16 Bitmap-format picture filename of the selected fan: GET_PICTURE_NAME

Void Function (subroutine � procedure) name: GET_PICTURE_NAME

DLL Export GET_PICTURE_NAME

 (KEY char* fan type descriptor input

 File_Name char*) Bitmap File Name (max 255 char) output

This function returns a picture of the selected fan. This is sized to be shown inside a picture box with
size 200(v) x 300(h) pixel.

The picture is supplied as a Bitmap-type (.bmp) file, whose complete path\filename.bmp is returned by
the function GET_PICTURE_NAME.

This function with a filename output was added to simplify work with programming languages like VB,
which do not allow easy representation of a bitmap through its handle.

Pag. 29/39

BDF DLL ver. 2.5.4; Arc. ver. 2.9.0 Completed 08-03-06 Printed 02/05/2006 9.17

4.17 EMF-format dimensional drawing of the selected fan: GET_WMF

Void Function (subroutine � procedure) name: GET_WMF

DLLExport GET_WMF

 (KEY char* fan type descriptor input

 hMF) HMETAFILE Handle to metafile output

This function supplies a drawing of the selected fan in scaleable vector graphics format (black/white) in
the form of a Windows Enhanced-Metafile (.emf format). This function allows inserting a reasonably detailed
view of the fan, including dimensions, in a printout of the technical data. The drawings show all the essential
dimensions with reference to an included table, showing relevant numerical values in mm.

The return variable is the �handle� to the drawing Enhanced-Metafile. When the values of the "handle"
are zero, the drawing is not available. The drawings show all necessary indications for:

dimensions

fixing points

holes

connection dimensions.

4.18 EMF-format dimensional drawing of the selected fan: GET_WMF_DIM_LIST

Void Function (subroutine � procedure) name: GET_WMF_DIM_LIST

DLLExport GET_WMF_DIM_LIST

 (char* KEY fan type descriptor

 HMETAFILE hMF Handle to metafile

 char* FileName Enh-metafile complete path (max 255 char)

 int* sort dimensions sort flag

 char* Letter[0:27] output array of 2 bytes chars

 double* Dimen[0:27]) output array of doubles

This function supplies a drawing of the selected fan in scaleable vector graphics format (black/white) in
the form of a Windows Enhanced-Metafile.

This additional function differs from the preceding one because a complete filename is offered in output
as an alternative to the Metafile Handle for those programming languages which cannot easily use the
handle.

Fan dimensions are supplied separately from the drawing as an array of two character strings containing
the reference letters used in the drawing, and an array of doubles with the corresponding dimensions in mm.

Pag. 30/39

BDF DLL ver. 2.5.4; Arc. ver. 2.9.0 Completed 08-03-06 Printed 02/05/2006 9.17

There is the option to re-order these two arrays according to an auxiliary text file containing the list of the
vector element numbers in the new required order, one on each line. The text file must have the same name
of the corresponding range-version archive and extension .SRT, e.g. �ADN-R.SRT�, and be located together
with the archive files in the Nicotra_it directory. This option allows locating the same dimensions in fixed
positions within the array, independently from the choices of reference letters of each particular drawing.
This is useful to automatically get dimensional details like fixing holes distance along and across the shaft
direction, shaft height and so on.

Dimensions re-ordering must be activated setting the variable �sort� to a value higher than zero.

If the metafile cannot be found, or if the sort option is activated and the appropriate .SRT file cannot be
found, the handle is set to zero.

4.19 Belt drive design and life calculation: single optimum design - GET_CALCULATION_BELT

Void Function (subroutine � procedure) name: GET_CALCULATION_BELT

This command allows an automated calculation of the optimal belt drive, giving the minimum bearing life
required and satisfying the following constraints:

1. Smallest possible number of belts, compatible with the required power

2. Smallest pulley diameters.

Calculations are based on belt data archives from the Optibelt� catalog, while sizes of pulleys and
bushes are taken from the Fenner� and Brook-Hansen� catalogues.

DLL Export GET_CALCULATION_BELT

 (int* s1

 int* s2

 double IN[0:23] input array of doubles

 char* KEY fan type descriptor

 char* BELT (max. 30 Bytes)

 char* ERRORMESSAGE (max 80 Bytes)

 int* z1

 int* z2

 double OUT[0:19] output array of doubles)

This command may have different operational modes, according to specific values in the inputs.

Pag. 31/39

BDF DLL ver. 2.5.4; Arc. ver. 2.9.0 Completed 08-03-06 Printed 02/05/2006 9.17

Variable Unit Input/Output Remarks
Fan type KEY Fan type descriptor
Belt drive type BELT Required belt section and groove number

range with format:
belt_section min_gr._nr,Max_gr. nr
Example: SPA 2,3 (note 1)

Numerical input data:
Operation mode IN(0) Allowable values are: 1, 2 (default), 3.

See note 3.
Required distance between
shaft centres

mm IN(1) If IN(1)=0 the lowest admissible distance is
used (default)

Minimum belt drive life h IN(2) If =0 default value of 40 000 h is used
Fan shaft required speed 1/min IN(3) Always > 0
Fan shaft required power kW IN(4) See note 2
Motor supply voltage V IN(5) Not used
Motor supply frequency Hz IN(6) If IN(6)=0 50 Hz is used (default)
Motor pole number IN(7) Always > 0
Motor nominal speed 1/min IN(8) See note 2
Motor nominal power kW IN(9) See note 2
Motor nominal speed (lower
speed of two speed motors)

1/min IN(10) Not used

Motor nominal power (lower
speed of two speed motors)

kW IN(11) Not used

Motor shaft diameter mm IN(12) See note 2
Belt drive design service factor IN(13) when left empty reverts to default 1.3
Motor shaft permissible
radial load

N IN(14) See note 2

Motor bearing life under
permissible radial load

h IN(15) See note 2

Exponent for motor bearing life
calculation

 IN(16) 3 for ball bearings,
3.33 for roller bearings; see note 2

Motor nominal torque Nm IN(17) unused
Motor starting torque Nm IN(18) unused
Operating temperature °C IN(19)
Max allowed rpm change 1/min IN(20) See note 2
Motor pulley diameter mm IN(21) See note 3
Fan pulley diameter mm IN(22) See note 3
Number of grooves - IN(23) Not used

Pag. 32/39

BDF DLL ver. 2.5.4; Arc. ver. 2.9.0 Completed 08-03-06 Printed 02/05/2006 9.17

Note 1: min_gr._nr is the minimum allowable number of belts
 Max_gr._nr is the maximum allowable number of belts

 The example shown requires the selection of an SPA section
 belt drive with a minimum of 2 and a maximum of 3 belts.

Note 2: if IN(9) and IN(8) = 0 and IN(4), IN(7) and IN(20) >0 then the speed and power of the motor
will be automatically selected from a standard motor catalogue; also IN(12), IN(13), IN(15),
IN(16) will be taken from such catalogue.

if IN(9) and IN(8) > 0 then all motor data in input are required; IN(20) is fixed by default in
100 1/min regardless the input value.

Note 3: if IN(0) = 1 this command will select pulley sizes only among pulleys available with conical
bushes. If IN(0) = 2 the code will evaluate also pulleys without bushes.

If IN(0) = 3 the code will calculate the bearing life starting from the pulley dimensions
supplied as input data in IN(21), IN(22) and in IN(23).

Numerical output data:
Error code OUT(0)
Actual achieved fan speed 1/min OUT(1) Calculated fan speed
Number of belts OUT(2)
Diameter of fan pulley mm OUT(3)
Conical bush code (fan) OUT(4) Taperlock� size code
Fan shaft diameter mm OUT(5)
Diameter of motor pulley mm OUT(6)
Conical bush code (motor) OUT(7) Taperlock� size code
Motor shaft diameter mm OUT(8)
Motor bearing life in operating conditions h OUT(9)
Belt length mm OUT(10)
Calculated distance between shaft centres mm OUT(11)
Maximum transmissible power kW OUT(12)
Belt speed m/s OUT(13)
Radial load on rotating shaft N OUT(14)
Static belt tension N OUT(15)
Radial load on shaft when stationary N OUT(16)
Test force N OUT(17)
Belt deflection under test load mm OUT(18)
Fan bearing life in
Operating conditions

h OUT(19)

Pag. 33/39

BDF DLL ver. 2.5.4; Arc. ver. 2.9.0 Completed 08-03-06 Printed 02/05/2006 9.17

4.20 Belt drive design and life calculation: multiple choice - GET_CALCULATION_MULTI_BELT

Void Function (subroutine � procedure) name: GET_CALCULATION_MULTI_BELT

This command allows an automated calculation of belt drives to achieve a minimum bearing life, giving a
multiple output, which allows relative evaluation of the possible alternative designs. Output is ordered to
have:

1. increasing number of belts (within the allowed range) and

2. increasing diameters.

Calculations are based on belt data archives from the Optibelt� catalog, while sizes of pulleys and
bushes are taken from the Fenner� and Brook-Hansen� catalogues.

DLL Export GET_CALCULATION_MULTI_BELT

 (int* s1

 int* s2

 double IN[0:23] input array of doubles

 char* KEY fan type descriptor

 char* BELT (max. 30 Bytes)

 char* ERRORMESSAGE (max 80 Bytes)

 int* z1

 int* z2

 double* OUT error code

 user defined �Trasmiss � TYPE TRAS[0:30] output array of user defined types)

This command may have different operational modes, according to specific values in the inputs.

Variable Unit Input/Output Remarks
Fan type KEY Fan type descriptor
Belt drive type BELT Required belt section and groove number

range with format:
belt_section min_gr._nr,Max_gr. nr
Example: SPA 2,3 (note 1)

Numerical input data:
Operation mode IN(0) Allowable values are: 1, 2 (default), 3.

See note 3.
Required distance between
shaft centres

mm IN(1) If IN(1)=0 the smallest possible distance is
used

Minimum belt drive life h IN(2) If =0 default value of 40 000 h is used
Fan shaft required speed 1/min IN(3) Always > 0

Pag. 34/39

BDF DLL ver. 2.5.4; Arc. ver. 2.9.0 Completed 08-03-06 Printed 02/05/2006 9.17

Fan shaft required power kW IN(4) See note 2
Motor supply voltage V IN(5) Not used
Motor supply frequency Hz IN(6) If IN(6)=0 50 Hz is used (default)
Motor pole number IN(7) Always > 0
Motor nominal speed 1/min IN(8) See note 2
Motor nominal power kW IN(9) See note 2
Motor nominal speed (lower
speed of two speed motors)

1/min IN(10) Not used

Motor nominal power (lower
speed of two speed motors)

kW IN(11) Not used

Motor shaft diameter mm IN(12) See note 2
Belt drive design service factor IN(13) When left empty reverts to default 1.3
Motor shaft permissible radial
load

N IN(14) See note 2

Motor bearing life under
permissible radial load

h IN(15) See note 2

Exponent for motor bearing life
calculation

 IN(16) 3 for ball bearings,
3.33 for roller bearings; see note 2

Motor nominal torque Nm IN(17) Unused
Motor starting torque Nm IN(18) Unused
Operating temperature °C IN(19)
Max allowed rpm change 1/min IN(20) See note 2
Motor pulley diameter mm IN(21) See note 3
Fan pulley diameter mm IN(22) See note 3
Number of grooves - IN(23) Not used
Error code OUT
OUTPUT: - TRAS[0:30] Array of Trasmiss TYPE variables

Note 1: min_gr._nr is the minimum allowable number of belts
 Max_gr._nr is the maximum allowable number of belts

 The example shown requires the selection of an SPA section
 belt drive with a minimum of 2 and a maximum of 3 belts.

Note 2: if IN(8) and IN(9) = 0 and IN(4), IN(7) and IN(20) >0 then the speed and power of the motor
will be automatically selected from a standard motor catalogue; also IN(12), IN(13), IN(15),
IN(16) will be taken from such catalogue.

if IN(8) and IN(9) > 0 then all motor data in input are required; IN(20) is fixed by default in
100 1/min regardless the input value.

Note 3 if IN(0) = 1 this command will select pulley sizes only among pulleys available with conical
bushes. If IN(0) = 2 the code will evaluate also pulleys without bushes.

If IN(0) = 3 the code will calculate the bearing life starting from the pulley dimensions
supplied as input data.

The general definition of a TYPE element is: TRAS.element_name. In the following list the composing
elements are listed and described.

Pag. 35/39

BDF DLL ver. 2.5.4; Arc. ver. 2.9.0 Completed 08-03-06 Printed 02/05/2006 9.17

Trasmiss TYPE elements description

Element Units Description Type
Pm - Motor poles number Long

Ngmot 1/min Motor speed Long

Ngole - Number of grooves Long

Dmot mm Motor pulley diameter Long

Dven mm Fan pulley diameter Long

NgventN 1/min Achieved fan speed Long

Ngvent 1/min Required fan speed Single

Wa kW Maximum transmissible power Single

Wr kW Minimum required motor power Single

Wass kW Fan Power Single

Wmot kW Motor Power Single

Heff h Fan bearing life in operating conditions Single

Qn kN Radial load on rotating shaft Single

Ieff mm Actual distance between shaft centres Long

L mm Belt length Long

Gamma Smaller pulley belt contact angle Long

Cl Belt length correction coefficient Single

Cg Belt contact angle correction coefficient Single

U m/s Belt speed Single

Cbven - Conical bush code (fan): Taperlock� size code Long

Cbmot - Conical bush code (motor): Taperlock� size code Long

Damot mm Motor shaft diameter Long

Daven mm Fan shaft diameter Long

Heffm h Motor bearing life in operating conditions Single

Ts kN Static belt tension Single

Depth mm Belt yield under test load Single

Fn kN Test force Single

Qst kN Radial load on shaft when stationary Single

CradMot N Motor shaft reference radial load Single

Hmot h Motor bearing life under reference radial load Single

EspMot - Exponent for motor bearing life calculation Single

N.B. :

Single = Float = IEEE 4 bytes real number

Long = Integer*4 = IEEE 4 byte Integer

String = Character

Pag. 36/39

BDF DLL ver. 2.5.4; Arc. ver. 2.9.0 Completed 08-03-06 Printed 02/05/2006 9.17

4.21 Setting up the archive search path - SETDLLPATH

Void Function (subroutine � procedure) name: SETDLLPATH

This command allows setting the search path for the archive files, when required, allowing simplified use
in a multi-user LAN environment.

 DllExport SETDLLPATH (char* DLLPath)

The DLLPath argument is the address (pointer) of a NULL terminated string, 260 characters long, used to
store the path to the �Nicotra_it� folder, which will contain all the archive files required by the DLL to operate.

Every call to the SETDLLPATH routine, with a valid path in the DLLPath string, sets the search path for
the archive files to the child subdirectory DLLPath + �\Nicotra_it\�.

When the SETDLLPATH is called with a valid string argument, the value of the DLLPath string will be left
unchanged and will contain the path to the parent directory of the Nicotra_it folder.

If any other function of the Nicotra.DLL file is called before calling the SETDLLPATH routine, the search
path to the archive files will be built, by default, starting from the Current Working Directory (Current Working
Directory + �\Nicotra_it\�), at the time of the first function call. This path will be stored and kept unchanged
until the DLL session is closed, or the SETDLLPATH is deliberately used to change it.

The SETDLLPATH routine can also be called with a NULL string as input, in two different cases:

• if neither the SETDLLPATH routine, nor any other routine of the dll, has ever been called since the DLL
upload time, a call with a Null argument string will build and store the path to the archive files, starting,
by default, from the Current Working Directory and adding the child directory name (Current Working
Directory + �\Nicotra_it\�),

• if the SETDLLPATH routine has already been used to explicitly set the path, or if this has already been
built, by default, at the first call of a different routine from Nicotra.DLL, the path already stored is kept
unchanged.

When SETDLLPATH is called with a NULL string argument, the routine will change the DLLpath string
value into the new searching path, including the �\Nicotra_it\� child directory name. This is essentially an
enquiry for the currently set path and can be used for troubleshooting.

Pag. 37/39

BDF DLL ver. 2.5.4; Arc. ver. 2.9.0 Completed 08-03-06 Printed 02/05/2006 9.17

Example:

If the Current Working Directory is: �C:\Programs\Executable file\� and the Nicotra_it folder is located
inside the �C:\Archive data\� directory, there can be three cases:

- If the SETDLLPATH is called with the string argument �C:\Archive data\�, the search path to the archive
files will be set to: �C:\Archive data\Nicotra_it\� and the input value �C:\Archive data\� will be left
unchanged.

- If the SETDLLPATH routine is called, for the first time, with a NULL string argument, the search path to
the archive files will be set by default to: �C:\Programs\Executable file\Nicotra_it� and the same string will
be written inside the DLLPath variable.

- If we call the SETDLLPATH routine with a NULL string argument, but the routine has been previously
called with the string argument �C:\Archive data�, the existing search path to the archive files will be
returned inside the DLLPath variable as: �C:\Archive data\Nicotra_it�.

5. ARCHIVE SCOPE AND COVERAGE

The archives annexed to Ventil version 3.1.2 cover performance of the ADH, RDH, RDA, ASH, RSH, AS,
AT and PFN1 product ranges, in their different single, twin and triple production versions, in accordance with
catalogues �I-2 01/04�, �D-3 03/05�, �Z-1 02/05�, �W-1 10/04�, �B-2 10/00�, �A-7 11/03� , �P-3 05/03�.

Ventil 3.1.2 includes also performance ratings for three Inch-sized product ranges, ATU, ADHU and
RDHU, according to catalogues ATU 07-2004, ADHU 07-2004 and RDHU 08-2004.

ADH, RDH, RDA and AT archives can be distributed also as a special, compressed package, intended to
assist software developers who have to integrate DLL files and archives with an AHU calculation package.

A second, separate, compressed package, contains the DLL files and the archive files for ATU-ADHU-
RDHU and RDAU inch-sized ranges.

ADN and RDN archives according to catalogue �C-6 03/00� have been included with Ventil up to version
2.0.0. They have been discontinued, as these products are now entirely superseded by ADH/RDH.

ADZ and RDZ archives, according to catalogue �L-3 10/94�, were distributed, on some particular markets,
with Ventil version 1.0.2 and 1.0.3. They are not distributed any more, as these products are entirely
superseded by ADH/RDH.

ASZ and RSZ archives, according to catalogue �M-3 05/99�, have been included with Ventil up to version
2.1.0. Again, they have been discontinued, as these products are now entirely superseded by ASH/RSH.

The traditional catalogues remain, at the moment, the official source for product performance figures.

Please look at any �readme.txt� file included with SW for any last minute archive update.

Pag. 38/39

BDF DLL ver. 2.5.4; Arc. ver. 2.9.0 Completed 08-03-06 Printed 02/05/2006 9.17

Important Notice:
Those customers who wish to restrict the scope of the selection functions, to select fans just from a part

of the available ranges, can amend the file NIC_INI.INI, deleting those lines referencing to undesired fan
range/version combinations.

Archive files should never be deleted before amending the NIC_INI.INI file, to avoid software
malfunctions and error messages due to the unavailability of expected files.

6. UPDATE HISTORY

Rev. 0: 14/02/2001
The unsigned short integer type dummy variables have been rectified to integer*2 type, to allow a correct

exchange. As these variables are not actually used by the dll, this doesn�t produce compatibility problems
with main programs written for the earlier versions.

Rev. 1: 12/04/2001
Added GET_PICTURE_NAME function.

Removed optional variable from function GET_PICTURE.

Rev. 2: 03/07/2001
Changed List length to 30000 bytes in GET_PRODUCTS.

Added DLL version number in the output of GET_ARCHIVE_VERSION.

Rev. 3: 09/07/2001
Reverted to standard List length of 20000 bytes in GET_PRODUCTS.

Totally revised text and structure.

Added function GET_INI_CONFIG.

Rev. 4: 16/07/2001
Changed again List length to 30000 bytes in GET_PRODUCTS.

Defined output from GET_INI_CONFIG function.

Distributed ver. 2.0.0, not compatible with Win95.

Rev. 5: 27/11/2001
Distributed ver. 2.1.0 with Ventil 2.0.0 on CD-Rom.

Introduced 20000 bytes GET_PRODUCTS string on backward-compatible version 2.1.1.

Listed different versions of the DLL v. 2 and their differences.

Clarified DLL file location.

Added description of the GET_PCURVES function.

Pag. 39/39

BDF DLL ver. 2.5.4; Arc. ver. 2.9.0 Completed 08-03-06 Printed 02/05/2006 9.17

Rev. 6: 28/01/2002
Updated introducing dll versions 2.2.0 and 2.2.1.

Rev. 7: 20/06/2002
Updated introducing dll version 2.3.0 and function SETDLLPATH.

Rev. 8: 10/10/2002
Updated introducing dll version 2.3.1 and various minor corrections.

Corrected note 4 in paragraphs 4.6 and 4.7.

Rev. 9: 03/02/2003
Updated introducing dll version 2.3.2.

Corrected bug in function GET_PICTURE_NAME.

Rev. 10: 02/08/2004
Updated introducing dll version 2.4.0.

Added description of the POINTS_DB_CONST function.

Rev. 11: 03/05/2005
Updated introducing dll version 2.5.2.

Added description of the function GET_NOISE_DATA.

Added description of the function GET_CERT_DATA.

Added description of the function GET_GRAPH_K.

Rev. 12: 13/10/2005
Revised description of the function GET_GRAPH_K.

Rev. 13: 08/03/2006
Described revised DLL versions 2.5.3 and 2.5.4 .

